FUNDING: DE-FC26-06NT42811

OXY-FUEL BURNER AND INTEGRATED POLLUTANT REMOVAL RESEARCH AND DEVELOPMENT TEST FACILITY

Jupiter Oxygen Corporation 4825 N. Scott Street Suite 200 Schiller Park, IL 60176

Principle Investigator: Mark Schoenfield

Presenter: Manny Menendez

JUPITER OXYGEN ENERGY TECHNOLOGY

- Development and Application of Oxy-fuel Technology
- Patents and Licensing
- Consulting Service

Fossil Fuel: coal, natural gas, oil, and biomass

Project Funding

Project revision	Start date	Government cost share	Recipient cost share	Total estimate
0	10/1/2006	\$ 2,051,670	\$ 517,455	\$ 2,569,125
1	4/1/2008	\$ 972,674	\$ 243,162	\$ 1,215,836
2	4/1/2009	\$ 669,784	\$ 173,492	\$ 843,276
2010-11	4/1/2010	\$ 2,825,387	\$ 705,560	\$ 3,530,947
Project total	Completion date 9/30/2011	\$ 6,519,515	\$ 1,639,669	\$ 8,159,184
		79.9%	20.1%	100%

Project Participants

- Jupiter Oxygen Corporation
- NETL
- Industry and academic partners

SNC Lavalin America, Inc Reaction Engineering International

Purdue University Coalteck Professor Stamps, Evansville University EPRI

Project Objectives

- Design, construct, and operate a 5 MWe equivalent test boiler facility
- Design, construct, and operate a 20 KWe equivalent IPR® facility
- Operate the test facility at steady-state optimum oxy-coal combustion and perform parametric studies
- Demonstrate oxy-coal combustion NOx levels no higher than 0.15 LB/MMBTU
- Demonstrate that CO₂ from the boiler/ IPR® meets the specifications for deep saline aquifer sequestration and/or enhanced oil recovery
- Evaluate the retrofit impact of oxy-coal combustion and the IPR® process on power plant design issues
- Generate the necessary technical data required to demonstrate the technologies are viable for technical and economic scale-up and conform to DOE's Carbon Sequestration Program goals

Project Objectives

- Design and construct an air-coal combustion burner for the 5 MWe equivalent test boiler. Operate air-coal burner to develop an air-coal combustion base line for the test boiler.
- Design, build, and operate a multi-radiant zone boiler system utilizing JOC high flame temperature technology
- Develop and implement a high flame temperature closed loop control strategy for the 5 MWe equivalent test boiler.

Technology Background JOC High Flame Temperature Oxy-Combustion

- Development of oxy-combustion technology for Jupiter Aluminum facility in Hammond, IN
 - Oxy-combustion process in use since 1997 in the aluminum furnace
- Jupiter Oxygen as a CRADA partner with the NETL (2003)
 - Successful retrofit of 0.5MWe equivalent boiler with JOC high flame temperature oxycombustion
 - Produced saturated steam while maintaining boiler interior temperature profile the same as with air firing
 - Boiler efficiency gains resulted
- Jupiter Oxygen/NETL project funded by DOE (2006)

Technology Background JOC High Flame Temperature Oxy-combustion

Key characteristics

- Eliminate air from the combustion system
- Fuel and oxygen mixed at the burner undiluted with flue gas recycle except to motivate coal (unlike low temperature oxy-combustion which dilutes oxygen with flue gas recycle prior to combustion)
- Results in a high flame temperature to enhance heat transfer in the radiant zone
- Flue gas produced is primarily carbon dioxide and water
- Flue gas recycle introduced around the flame/combustion zone to adjust the total flue gas volume flow and transfer heat duty to the convective zone as required
- Additional FGR does not lower flame temperature

Technology Background JOC High Flame Temperature

Benefits

- Significantly reduce NO_x emissions at combustion
- Enhanced radiant heat transfer increases boiler efficiency which results in boiler fuel savings
- Less fuel results in lower carbon generation, reduced capture costs, and lower oxygen demand
- Reduced volume of flue gas and concentrated carbon dioxide in flue gas also reduces the cost of carbon capture

Challenges

- Burner stability and performance
- Balancing heat duty in radiant and convective zones for retrofit projects or conventional new build projects
- Minimizing air in-leakage to boiler

Technology Background NETL Integrated Pollutant Removal (IPR®) System

Key Characteristics

- A series of compression stages where cooling upstream of each stage is leveraged for heat recovery and CO₂ purification
- Heat recovery step employs both direct-contact and indirect heat exchange
- Condensed water is removed from the flue gas and recycled for power plant use
- Water-soluble materials are removed from the flue gas

Advantages

- Integration of IPR® with the power plant thermal cycle minimizes parasitic load for the work required to remove pollutants and capture/process CO₂
- Condensed water captured from the combustion flue gas is sufficient offset 100% of the boiler feed water makeup and up to 7% of the cooling water makeup for the plant
- IPR® uses "off the shelf" technology

Challenges

- Optimizing material selection costs while minimizing corrosion concerns
- Treatment of captured water for release and/or use in the plant water supply

Project Accomplishments

- Retrofitted and operated a 5 MWe equivalent test boiler facility
 - No major boiler modifications required
 - No increased fouling and slagging indicated (study continues)
 - No damage to boiler materials indicated (study continues)
 - Operated the test facility with air-natural gas and oxy-natural gas combustion
 - Performed parametric studies with natural gas combustion
 - Designed, constructed, and operated a pulverized coal feed system with a scaled up oxycoal burner from the CRADA work
 - Performed a series of oxy-coal burner development tests which resulted in a modified first generation burner
 - Performed parametric studies with the modified first generation oxy-coal burner
 - Developed a CFD model of the modified first generation burner
 - Based on test results and CFD modeling, a second generation burner has been developed, modeled, and is currently being tested

Project Accomplishments

- Designed, constructed, and operated a 20 KWe equivalent IPR® facility
 - Test IPR® system has yielded gas composition and liquid composition process results
 - Demonstrated CO₂ capture at 95% to 100%
 - Pollutant removal from captured CO₂
 - 95% NOx , SOx, particulate
 - 60% to 90% mercury
 - Water treatment tests (on flue gas condensate) point to FeCl₃ as an effective flocculent especially when paired with polymeric flocculent
 - In-situ corrosion sensors have been installed to characterize material possibilities inservice
- Flame analysis instrumentation upgraded to include
 - In-furnace camera viewing the entire flame
 - Mono-chromators and spectrometers detecting gray-body and radiant-gas signatures for independent temperature determination
 - Total-radiometers coupled with cameras to track total radiation while taking port-occlusioncaused attenuation into account.

Project Accomplishments

Air-coal baseline burner

- An air/coal burner has been specifically design and fabricated for the Jupiter Test Facility boiler.
- Auxiliary equipment for the air burner system has been purchased.

Modular boiler system

- Process design has been completed
- Equipment bid specifications have been completed and quotes received for non-fired vessels
- Fired vessels are currently in mechanical design to develop bid drawings

System economic study

- Full-scale parametric model of a power plant retrofitted with high temperature oxycombustion and an IPR® system has been developed.
- Provided retrofit design basis to NETL systems group.
- NETL systems group is currently developing a cost estimate for high flame temperature oxy-combustion retrofit to a commercial power plant.

5 MWe Equivalent Test Boiler

50 MMBTU/hr OXY-COAL BURNER

20 KWe equivalent IPR System

Coal Pulverizer and Flue Gas Recycle Loop

2nd Generation High Temperature OXY-coal Burner

(bench scale model)
Developed in cooperation with Maxon Corporation

2nd Generation OXY-coal Burner (bench scale model – end view)

Developed in cooperation with Maxon Corporation

CFD modeling by NETL

Primary oxygen
Tangential ports (4)

2nd Generation OXY-coal Burner (50MMBTU/Hr model)

Particle Trajectories

2nd Generation OXY-coal Burner (50MMBTU/Hr model) Gas Temperature Profiles

Radiant pass of the Hammond Test Boiler

Overview of the IPR process

(installed at Jupiter Oxygen Burner Testing Facility, Hammond, IN)

Material Dissolved in Water Sampled from IPR Cooling Stages

Flocculation/Coagulation tests show ferric chloride treatment as a promising first step to purifying recovered flue-gas water (effective at low dosage)

Turbidity removal of water sample using various dosages of Ferric Chloride

(treating water taken after tower heat exchanger: 11/04/09:2.04 pm)

Ferric Chloride (FeCl3.6H20) Dosage (mg/liter)

Fraction Removed by Flocculation/Coagulation

Sludge from Flocculation Experiments

Project work going forward

- Second generation oxy-coal burner testing
 - Burner testing and comparison against CFD modeling
 - Conduct test matrix of control variables
 - Perform extended steady state run at optimal operating conditions
- Doosan Babcock slagging and fouling study
 - Modeling work already completed
 - Slag samples collected from December 2009 testing
 - Slagging and fouling study to be completed
- Develop air-coal combustion base line
 - Install purchased air-coal combustion burner assembly
 - Commission and operate to determine a base line performance for coal combustion in the JOC test boiler
 - Evaluate performance with respect to oxy-coal performance

Project work going forward

- Modular boiler
 - Complete the mechanical design of the modular boiler system
 - Develop detailed construction cost estimate
 - Construct, operate, and test the modular boiler system
- IPR® evaluation
 - Improved gas analysis at all stages
 - Energy recovery optimization modeling
 - In-situ and correlative lab tests for corrosion in IPR-produced environments

Generate additional technical data for the following

- High flame temperature oxy-coal/ IPR® retrofits
- Captured CO₂ meeting EOR/sequestration specifications
- Commercial scale-up study with economics
- Meeting DOE Existing Plants Program Goals

Summary

Combined Jupiter Oxygen high flame temperature oxy-combustion technology and NETL IPR® pollution control and carbon capture system for coal fired power plants

- Technologies provide a means to retrofit existing power plants and build new ones.
- Boiler system fuel savings can be expected from high flame temperature oxycombustion technology.
- 95-100% carbon capture is feasible.
- Technologies allow fully carbon capture ready power plants to exist today which can be completely compliant with clean air regulatory requirements.
- Water recovery will exceed boiler feed water makeup requirements and partial cooling water makeup requirements.
- Heat integration from cryogenic oxygen plant and IPR® compressors can lower fuel costs.

Summary

- While high flame temperature oxy-combustion burner and IPR® scale-up and optimization will continue during the current project year, these technologies are ready for commencement of a demonstration pilot project.
- The 5 MWe equivalent boiler retrofit completed for this JOC-NETL project has demonstrated
 - High flame temperature oxy-combustion can make steam in a conventional, older boiler without changing boiler interior materials
 - The IPR system uses commercialized equipment, and scale-up also will use commercialized equipment.
- Total parasitic power requirements for both oxygen production and carbon capture currently are in the range of 20%.
- Preliminary economic projections indicate that new and retrofitted coal fired power plants can achieve 95-100% carbon capture with COE increase of not more than 35% provided a net CO₂ revenue of approximately \$20 per ton.